

Setting the Scene: Latest COVID-19 data & impact on people living with HIV

Dr. Meg Doherty Director Global HIV, Hepatitis, STI Programmes World Health Organization 2 July 2021

Global Situation

(as of 30 June 10H CEST)

- Previous 24 hours:
 - 337,163 new confirmed cases
 - 6,617 new deaths
- Cumulative:
 - **181,521,067** confirmed cases
 - 3,937,437 deaths

Region of the Americas

European Region

African Region

Countries with the highest number of new cases in previous 24 hours

Country		New Cases	Total Cases	New Deaths	Total Deaths
India		45,951	30,362,848	817	398,454
Colombia		28,478	4,187,194	648	105,326
Brazil	mon	27,804	18,448,402	618	514,092
Indonesia		21,807	2,178,272	467	58,491
Russian Federation	\sim	21,042	5,514,599	669	135,214
United Kingdom	_h	20,223	4,775,305	23	128,126
United States of America		18,442	33,317,803	302	599,089
Argentina	^	18,389	4,423,636	574	93,142
South Africa	N	13,347	1,954,466	226	60,264
Iran (Islamic Republic of)	A	12,717	3,192,809	142	84,127

Deaths

Western Pacific Region Eastern Mediterranean Region South-East Asia Region

data smoothed with 7-day moving average

Globally, cases of the Alpha variant have been reported in 172 countries, territories or areas (hereafter countries; two new countries in the past week), of Beta in 120 countries (one new country), Gamma in 72 countries (one new country) and Delta in 96 countries (11 new countries).

Global Situation (as of 30 June 10H CEST)

Figure 2. COVID-19 cases per 100 000 population reported by countries, territories and areas, 21 - 27 June 2021**

Figure 3. COVID-19 deaths per 100 000 population reported by countries, territories and areas, 21 – 27 June 2021**

"See Annex 2: Data, table and figure notes

Spread of SARS CoV-2 Variants

*Includes countries/territories/areas reporting the detection of 8.1.617 without further specification of lineage at this time. These will be reallocated as further details become available.
**Countries/territories/areas highlighted include both official and unofficial reports of VOC detections, and do not presently differentiate between detections among travellers (e.g., at Points of Entry) or local
community cases. Please see Annex 2 for further details.

Epidemic curve by region

(as of 30 June 10H CEST)

Number of deaths

Cases depicted by bars; deaths depicted by line. Data smoothed with 7-day moving average. Note different scales for y-axes.

COVID-19 and HIV: What it the relationship?

- Are PLHIV on ART protected against COVID-19 ART?
- Are PLHIV more susceptible to SARS-CoV-2?
- Is COVID-19 more severe in PLHIV?
- Is the risk of death higher in PLHIV?
- What is the impact of COVID-19 pandemic in HIV care services?
- Are COVID-19 vaccines safer and effective in PLHIV?

Efficacy and safety of ARVs for the treatment and COVID-19

22 observational studies (227 patients)

- Timing, treatment duration / dose varied, co-interventions
- The low certainty of the evidence
- 2 clinical trials
 - Severe COVID-19 : mortality numerically lower in the LPV/r group (14/99) compared to the control group (25/100) not statistically significant.
 - Mild to moderate COVID-19: no difference in positive to negative conversion rates for SARSCov2 and clinical outcomes

Based on available evidence, the use of LPV/r or other antiretrovirals do not improve clinical outcomes in individuals with COVID-19.

Risk Ratio

The COVID-NMA initiative

A living mapping and living systematic review of Covid-19 trials

Pharmacological treatments

Risk of Bias

All-cause mortality D28

-2/N2

,	days							4	1	в	С	D	Е	Overall	Risk Ratio [95% CI]
2															
Mild/moderate															
Yueping L, 2020	21	Lopinavir-Ritonavir	Standard care	0/34	0/17				2.0	2	2		2	1	
Mild to critical		400/100 mg/day									-		-		
Ader F, 2021	28	Lopinavir-Ritonavir	Standard care	14/150	12/152		<u> </u>					-	-	-	1.65% 1.18 [0.57, 2.47]
Mild to critical		800/200 mg/day									-	Ξ.	-	-	
Pan H, 2020	28	Lopinavir-Ritonavir	Standard care	148/1411	146/1380		H					2		-	19.15% 0.99 [0.80, 1.23]
Mild to critical		800/200 mg	800/200 mg												
Horby P, 2020	28	Lopinavir-Ritonavir	Standard care	374/1616	767/3424						-	2	-	-	75.99% 1.03 [0.93, 1.15]
Severe		800/200 mg									Ξ.		-	-	
Cao B, 2020	28	Lopinavir-Ritonavir	Standard care	19/99	25/100	ì	ц.								3.21% 0.77 [0.45, 1.30]
Heterogeneity: Q = 1.50, p =	= 0.83; I^2 = 0.0%; τ^2 = 0	400/100 mg/day	Total:	555/3310	950/5073										
Risk of bias ratings: Low Risk of Bias Some Concerns High Risk of Bias	Risk A: Bias due to ra B: Bias due to d C: Bias due to m D: Bias due to o E: Bias due to se	of Bias Domains: andomization eviation from intended interver ulsoing data ulcome measurement election of reported result	tion		Intervention 1	1 better	1	Intervention	2 bet	ter	2	Data so	ource: 1	the COVID-NN	1.02 [0.93, 1.12] A initiative (https://covid-nma.com/)

Does HIV affect COVID-19 mortality?

Recent systematic review & metanalysis (Hariyanto et al, S A J HIV Med, 2021)

- 28 studies (218,255 patient)
- Pooled analysis suggests HIV is associated with greater mortality from COVID-19, (OR= 1,1995% CI 1.01-1.39, p=0.03) and not affected by age, gender, race or ART use.
- Subgroup analysis show statistically significance only in studies from Africa and USA, but not in Europe and Asia
- Weaknesses:
 - Primarily observational data and use of pre-print studies
 - Limited number of studies included CD4, VL and ART information
- Larger observational or RCTs are needed

Association of HIV with mortality from COVID-19 outcome

	н	v	Non-H	IIV		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random. 95% Cl	M-H, Random. 95% Cl
Berenguer J et al. 2020	6	26	1125	4009	2.2%	0.77 [0.31, 1.92]	
Bhaskaran K et al. 2020	25	27480	14857	17255425	5.6%	1.06 [0.71, 1.56]	<u> </u>
Boulle A et al. 2020	115	3978	510	18330	7.5%	1.04 [0.85, 1.28]	+
Braunstein SL et al. 2020	312	2410	16160	199602	8.3%	1.69 [1.50, 1.90]	+
Cabello A et al. 2020	1	31	903	7030	0.6%	0.23 [0.03, 1.66]	
Chilimuri S et al. 2020	14	22	146	353	2.3%	2.48 [1.01, 6.07]	
Docherty AB et al. 2020	23	83	4506	17168	4.7%	1.08 [6.67, 1.74]	
El-Solh AA et al. 2020	8	144	257	7672	3.0%	1.70 [0.82, 3.50]	
Garibaldi BT et al. 2020	1	9	130	822	0.5%	0.67 [0.08, 5.36]	
Geretti AM et al. 2020	30	111	14555	43015	5.3%	0.72 [0.48, 1.10]	
Gudipati S et al. 2020	23	278	5919	64993	5.2%	0.90 [0.59, 1.38]	
Hadi YB et al. 2020	20	404	1585	49763	5.0%	1.58 [1.01, 2.49]	
Harrison SL et al. 2020	17	226	1279	31235	4.6%	1.91 [1.16, 3.13]	— —
Hsu HE et al. 2020	2	71	96	2658	1.1%	0.77 [0.19, 3.20]	
Huang J et al. 2020	2	35	3869	50333	1.0%	0.73 [0.17, 3.03]	
Jassat W et al. 2020	644	3077	6122	32473	8.4%	1.14 [1.04, 1.25]	*
Kabarriti R et al. 2020	16	92	902	5810	4.2%	1.15 [0.67, 1.97]	
Karmen-Tuohy S et al. 2020	6	21	10	42	1.4%	1.28 [0.39, 4.18]	
Kim D et al. 2020	1	24	120	843	0.6%	0.26 [0.04, 1.96]	
Lee SG et al. 2020	1	4	226	7335	0.4%	10.49 [1.09, 101.19]	
Maciel EL et al. 2020	4	4	216	416	0.3%	8.33 [0.45, 155.79]	· ·
Marcello RK et al. 2020	20	94	1704	6154	4.6%	0.71 [0.43, 1.16]	
Miyashita H et al. 2020	23	161	1235	8751	5.1%	1.01 [0.65, 1.58]	+
Ombajo LA et al. 2020	11	53	96	734	3.2%	1.74 [0.87, 3.50]	
Parker A et al. 2020	6	24	22	89	1.8%	1.02 [0.36, 2.88]	
Sigel K et al. 2020	18	88	81	405	4.0%	1.03 [0.58, 1.82]	
Stoeckle K et al. 2020	2	30	14	90	0.9%	0.39 [0.08, 1.82]	
Tesoriero JM et al. 2020	207	2988	14522	375260	8.1%	1.85 [1.60, 2.13]	-
Total (95% Cl)	419	968		18190810	100.0%	1.19 [1.01, 1.39]	
Total events	1558		911167				
Heterogeneity: Tau ² = 0.07; Chi ² = 96.87, df = 27 (P < 0.00001); l ² = 72%. 0.01 0.1 1 10 100 Tast for superly laffert; Z = 2.15 (P = 0.02) Favours HIV Favours non-HIV 100 100							

HIV, human immunodeficiency virus; M-H, Mantel-Haenszel; CI, confidence interval.

Hariyanto TI. Human immunodeficiency virus and mortality from coronavirus disease 2019: A systematic review and meta-analysis.S Afr J HIV Med. 2021;22(1), a1220. https://doi.org/10.4102/sajhivmed.v22i1.1220

WHO Global Clinical Platform for COVID-19

In May 2020 WHO/WHE launched the Global Clinical Platform and invited Member States, heath care facilities and research networks to collect patient-level **anonymized clinical data of people hospitalized with confirmed or suspected COVID19** using standardized data collection tools

Goal is to inform global and national policies and responses to COVID-19 through a «living» assessment of:

- **1.** Regional variations and temporal trends in clinical presentations, clinical care and uptake of WHO recommended interventions for COVID-19
- 2. Risk factors associated with mortality and disease severity globally and by region
- 3. Clinical features, and prognostic factors in **subpopulations**, including **people living with** <u>HIV (PLHIV)</u>
- 4. Post COVID-19 condition

https://www.who.int/teams/health-care-readiness-clinical-unit/covid-19

HIV & COVID-19

Outcomes among PLHIV hospitalised with COVID-19, by severity of illness at hospital admission

23.1% of PLHIV with a known outcome died during the hospital stay

Vaccination distribution

Cumulative COVID-19 doses administered per 100 population

Average per income group - HIC - UMIC - LMIC - Worldwide 60 51.6 50 40 Switch to WHO data 30 source 19.7 20 18.6 10 4 8.1 • 0.7 0 Dec Jan Feb Mar May Apr Ratio of 200x 10,000x 69x 84x O doses in LICs HIC to LIC

Total COVID-19 doses administered per 100 population

End-to-end: Vaccination

Safety of COVID-19 vaccines in PLHIV

Do COVID-19 vaccines provide protection for PLHIV?

- No evidence to support a less robust immune response to COVID-19 vaccines among PLHIV and low CD4 cell counts
- Approved vaccines do not use attenuated viruses (similar safety to the non-immunodeficient population is plausible)
- No interaction of current vaccines with ART (ARVs show no clinical activity against SARSCov-2)

Inactivated	virus Viral	subunit Vi	ral vector RM	IA vaccines
able. Advantages and o	disadvantages of immunogens used	in vaccines		
IMMUNOGEN	WHAT IT IS	ADVANTAGE	DISADVANTAGE	EXAMPLE OF VACCINES
Inactivated virus	Inactivated dead virus	Induces strong antibody response	Requires large quantities of virus, low or no cellular response	Influenza, rabies hepatitis A
/iral subunit	A protein derived from a pathogen	May have fewer side effects than whole virus (redness, swelling at injection site)	May be poorly immunogenic; complex process	Influenza
iral vector	Viral pathogen expressed on a safe virus that doesn't cause disease	Rapid development, strong cellular response, relatively easy to produce	Prior exposure to vector virus (eg. adenovirus) may reduce immunogenicity, some vectors require boosting with a different vector	Ebola
Nucleic acid	mRNA coding for a viral	Strong cellular immunity; rapid	Relatively low antibody response	COVID-19

• H su re • N • B

COVID-19 vaccines using adenovirus vector (AD5) & theoretical risk of HIV infection

- HIV vaccine studies STEP & PHAMBILI (2007): increased HIV infection in male subgroups in both studies - reason uncertain (interference with vaccine-specific response or susceptibility of CD4 cells to HIV?)
- More recent study did not show this association
- Benefits of all licensed vaccines outweigh potential risks in a pandemic context
- More specific studies with vaccines using AD5 vectors are needed

Efficacy of COVID-19 vaccines in PLHIV

Should PLHIV get COVID-19 vaccines early in the roll out?

- WHO recommends that countries refer to the WHO SAGE Roadmap For Prioritizing Uses Of COVID-19 Vaccines In The Context Of Limited Supply
 - PLHIV should not be excluded from COVID-19 vaccine access plans regardless of immune status

•

٠

Consider inclusion of PLHIV as priority group for COVID-19 vaccination according to epidemiological context.

	Version 1.1	13 November 2020	WHO is workin through the <u>Ai</u> COVID-19 vace <u>Facility</u> ³ led by distribution of listing, prequal In consultation mechanism fo the pandemic, the human rigi
	WHO SAGE ROADMAP FOR PF USES OF COVID-19 VACCINES CONTEXT OF LIMITED SUPPLY An approach to inform planning and subsequent recomme plandmiddagic setting and vaccine supply scenarios	RIORITIZING IN THE	guidance on va highest priority supply. This is COVID-19. As o Authorized COV It is not current the virus on to to take preven keeping rooms or tissue ⁶ .
	Version 1:1 13 November 2020	World Health Organization	¹ https://www.who. ² https://www.who. ³ https://www.who. ⁴ https://www.who. 8 April 2021
tps adr	://www.who.int/publications/m/item/ map-for-prioritizing-uses-of-covid-1	<u>who-sage-</u> 9-vaccines-in-	

the-context-of-limited-supply

Q&A COVID-19 vaccines and people living w As of 08 April 2021

How does WHO support to access COVID-19 vaccines?

vere are currently more than 70 COVID-19 vaccines in various stages of clinical trials. Severa we already been approved by national bodies and are being provided in countries. WHO is empiling the COVID-19 vaccine tracker with detailed information on vaccines in both clinical an eclinical development¹.

WHO is working in collaboration with scientists, global health organizations and manufacturers, htmogh the <u>Access to COIDPO 15 tools IACTI Accelerator</u>, to speed up the pandemic response. COIDPO 94 vocines are being distributed by the <u>COINPO 194 vocines Global Access (COIAR)</u> <u>locator</u> is do by WHO, GAVI and CEPL, which aims to facilitate the equilable access and <u>listribution of vocines</u>, that are found to be asias and effective and have WHO emergency use

using prequirations or integer regulation subvectors, to prove paper in 2 controls more accounts of the Minestein States and AC-14 accounts of the Minestein States and AC-14 accounts of the Minestein States and AC-14 accounts integer and accounts and the Minestein States and AC-14 accounts and

submitted CVID-19 succines ginglicently reduce the risk of server disease and death. However, is to currently lower to what a ceter topole who have received LOVD-19 succine can pass to visu on to others after vacionition. Therefore, one vaccinese, all people should continue to a submitted to the second server and the second second second second second second and the second seco

	Eps://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vacches
'N	tps://www.who.int/initiatives/act-accelerator
* N	tps://www.gavLorg/covas-facility
4.54	When I have a she in the management in this paper in paper in the community. 2019 State in the cohier factors and here to use much

40 countries have included PLHIV as a priority group in their national COVID-19 vaccine plans

HIV vs COVID-19: comparative vaccine pipelines in 2020

Compilation from several sources, Apr 2021

Question	HIV vaccine candidates	COVID-19 vaccines candidates
Timeline	35+ years	15 months
Total number of candidates	18 in clinical evaluation	91 in clinical evaluation
developed	28 in pre-clinical	184 in preclinical
	46 total	
	4 tested in office systemicle	275 total (6 based on HIV vaccines)
	4 tested in enicacy thats	13 products approved by at least one SPA
	100+ other discontinued pre-efficacy	15 products approved by at least one SNA
Total investment in USD/ vaccine	\$14.5 billion from 2000-2018	~ \$10 billion in 2020
development effort	(no specific data pre-2000)	φ10 0
	In 2018: \$842 million:	R&D manufacturing: Investment in R&D of \$2.4 B; tech
	basic research (17.5%)	transfer/scale-up \$1.7 B, at-risk manufacturing of \$5.3 B;
	preclinical (42.9 %), clinical (36%), cohort	~\$4.3 B at-risk manufacturing (to be recovered as inventory
	(2.8 %), advocacy (2.8%)	value for successful candidates).
Total investment in 2020 for	\$850-900 million	\$100-105 billion
vaccine effect		
Active Industry Investments in	2	10
Late-Stage Trials and		
Development		

Interaction of the HIV and SARS-CoV-2 pandemics and unanswered questions

Clinical: Worse outcome possible for people living with HIV Not noticed in small series but Impact: suggested in large cohort studies Increase HIV viraemia and Consider different diagnoses (eq, Epidemiological: excess mortality in people Pneumocystis jirovecii) Higher effect in susceptible living with HIV due to Consider coinfections populations COVID-19-induced Disruption to HIV prevention and interruption in health-care treatment services due to the services COVID-19 pandemic Interference in prevention campaigns (ie, pre-exposure prophylaxis), with increased HIV transmissions COVID-19 treatment: Comorbidities in people living No evidence that antiretroviral with HIV: Worse clinical outcome for drugs are active against SARS-CoV-2 COVID-19 infection related to Treat COVID-19 infection similar comorbidities, which are more SARS-CoV-2 prevention: to HIV-negative individuals prevalent in people living with Immune responses to SARS-CoV-2 Check drug–drug interactions HIV compared to general vaccines unknown Seek advice of an HIV specialist population Immunosuppressed people living with HIV being a priority group for

vaccination

COVID-19 continues to disrupt essential health services

Percentage of responding countries (n= 135) experienced a disruption to health services due to COVID-19

Vaccine preventable disease campaigns postponed due to COVID-19

Pulse survey on continuity of essential health services during the COVID-19 pandemic

Global results – as of 16 April 2021

Percent of countries

5-25% disrupted ■26-50% disrupted ■More than 50% disrupted

Average percentage of countries reporting disruptions

to noncommunicable disease services by income group

Global (n=121)

High income (n=30)

Low income (n=25)

Upper midole in come (n=34)

Lower middle in come (n=32)

100%

COVID-19 Disruptions of HIVs Diagnosis & Treatment Services

Disruption in other services for HIV and viral hepatitis, March 2021

Disruption in of ART services caused by COVID-19, by WHO region, March 2021

Report has best practices from each region of policy implementation and community delivery

Countries reporting on ARV disruptions due to COVID-19, 2020-21

Preliminary results compiled from a survey conducted by WHO between April and Sept 2020 (n=127)

Results compiled from a survey conducted by WHO in November 2020 (n=152):9 countries reported ARV disruptions

Number of countries reporting disruption in antiretroviral therapy services in June 2020, November 2020 and March 2021

Organizatior

Source: Global HIV, Hepatitisand STIs Programmes (HSS), WHO, 2020

Disclaimer: The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

Countries reporting on ARV disruptions due to COVID-19, 2020 -21

National policies on frequency of ART pick-up for people who Granization are stable on ART, 2020

Source: Global Aids Monitoring, UNAIDS/WHO/UNICEF and WHO HIV/HEP/STI COVID-19 Questionnaire, 2020

World Health Organization

COVID-19: HIV testing declines; EMTCT is mixed, and treatment stable

Organization

Difference in total HIV tests and HIV positive tests

Comparing percent difference between Jan-Sep 2020 GAM and annual 2019 GAM

% Difference in HIV+ tests (Mid-year vs 2019)

- Most countries do not appear on track to achieve both HIV testing and total positive diagnoses achieved in 2019
- Jamaica, Georgia, Rwanda, Armenia, and Uganda appear mostly on track to achieve HIV testing and positive test volumes in 2019.
- Cambodia despite substantial testing very few positive tests reported compared to 2019
- Importantly some reductions in HIV testing compared to 2019 are due to broader efforts to invest in more targeted testing in 2020 prior to COVID-19 related disruptions

In Botswana, Kenya, Rwanda, and South Africa VMMC services were suspended or slowed down in April 2020, however services are resuming

Source: UNAIDS HIV services tracking tool, 2020 Notes: Data are reported monthly by mational country teams, with support from UNAIDS, UNICEF: and WHO: historical monthly data may be updated or revised at the time of each submission; thus results may change.

Are new care delivery models effective?

Opportunities to build back better health systems to address inequalities

Testing &	 Available evidence shows overall high positive acceptance of HIV self-testing among PLWH during lockdown
Models	 One qualitative paper in Kenya reported reduction of outreach and testing services among sex workers (Q2#15)
	<u>PrEP/ART teleconsultation</u>
	 In <u>Brazil</u>, PrEP teleconsultation was experienced by 23% of users, with 89% feeling satisfied and 70% reporting high openness and acceptability to PrEP teleconsultation. (Q2 #1)
Treatment Delivery Models	 In Italy, 24% of patients in a large HIV clinic used teleconsulting, with no patients visiting the unit presented with acute COVID. (Q2 #5)
	 In Australia, HIV care continued with 95% and 98% being able to access their HIV provider and antiretroviral therapy (ART), respectively. Telehealth was used by 92% and was largely well received. (Q2 #14)
	 <u>Multi-month dispensing</u>: In <u>Egypt</u>, multi-month dispensing of ART was implemented among a small group of participants (n=40) who self-reported increased adherence. (Q2#2)
	 <u>Telemedicine Pre-Planning</u>: In a randomized trial of visits delivered by telemedicine <u>in the US</u>, HIV patients were randomized to have a pre-visit planning call to address barriers to telemedicine visit versus a standard reminder call. No difference between pre-visit and control in scheduled visit attendance (83% v. 78%, OR 1.38, 95% CI 0.67–2.81). (Q2#3)
Prevention	 <u>Prevention</u>: One study (<u>UK)</u> used automated SMS messages sent to construction workers with unknown HIV status resulted in 22% subsequently taking a HIV test during 10-week study period. (Q2#4)
Models	 In Kenya, a virtual outreach program using social media platforms (WhatsApp, Facebook, Grinder) was

World Health

Maintaining Essential Health Services

Maintaining essential health services: operational guidance for the COVID-19 context

New version of operational guidance -underdevelopment

- 1) expands on the operational choices facing countries,
- accommodates critical changes in disease-specific and lifecourse program guidance according to:
- Horizon of COVID-19 vaccination distribution
- Impact of prolonged disruption of services
- Accumulating direct and indirect impact of the pandemic on HCW & communities
- Sustained changes in care seeking behavior
- Sustained changes in service delivery context
- Need to orient response capacity-building activities towards forward-thinking health system strengtheninh
- Changes in risk and patterns of transmission with new variants

Disruption in Health Service Delivery

Survey results of Global Fund-supported programs show widespread disruptions to HIV, TB and malaria service delivery as a result of the COVID-19 pandemic (as of 1 June)

Countries accessing Global Fund support to fight COVID-19 as of 22 June

The Global Fund's Response to Mitigate the Impact of COVID-19 on Countries Affected by HIV, Tuberculosis and Malaria': All figures in US\$

	Resource Need for Global Fund Implementing Countries	Global Fund Share
Adapt HIV, TB and Malaria Programs	\$2.7bn	\$1bn
Protect Front-line Health Workers	\$10.8bn	\$1.8bn
Reinforce Systems for Health	\$2.3bn	\$0.9bn
Fight COVID-19	\$12.7bn	\$2.3bn
Diagnostics	\$4.9bn	\$1.9bn
Therapeutics	\$7.8bn	\$0.4bn
SUBTOTAL	\$28.5bn	\$6bn
Global Fund resources already made available through grant flexibilities and the COVID-19 Response Mechanism		\$1bn
TOTAL ADDITIONAL RESOURCES REQUIRED		\$5bn

7 The breakdown of funding across the categories is indicative and does not necessarily reflect how the US\$6 billion will be distributed.

C19 RM 2.0

C19 RM 2.0 Update

2021 Fast-track Requests:

- US\$493 million is awarded to 29 countries and 1 multicountry/ via Fast-track (represents 6.8% of applicants' HTM allocation). This represents 55% of the total Fast-track mechanism.
- · In total 39 fast-track requests were received, including 8 to be resubmitted due to incomplete documentation.
- Assuming all under review are approved 34% of the US\$900 million ceiling remains available for award.

OVERVIEW

C19RM Award by Priority Area

(as of June 21)

Award by priority area: Investments are mainly directed towards reinforcing COVID-19 national response. This is expected as the awards are for Fast-track. With only five Full Funding Requests awarded or recommended for Board approval, we are already seeing a more balanced picture across the priority areas.

C19RM Award by Health Products

Health product investments are more balanced across key Health Products Over 50% of awards to date are expected to come via Wambo.

02/07/2021 | Title of the presentation

(as of June 21

Summary

Question	Key Messages
Use of ARVs for treatment of COVID-19	 No evidence that LPV/r or other ARVs improve COVID-19 clinical outcomes
Clinical/epidemiological links between HIV and COVID-19 (impact on incidence, severity and mortality of COVID-19)	 Evidence is mixed, particularly PLHIV susceptibility to COVID-19. Recent data suggest the evidence may be strongest to support a relationship between HIV and COVID-19-related severity and in hospital mortality. Similar to those without HIV, co-morbidities among PLWH are correlated with greater severity and mortality.
COVID-19 impact on HIV morbidity and mortality (health service disruptions)	 Maintaining access to testing, ART and adherence support is of the utmost importance to minimize excess HIV-related mortality due to COVID-19 restrictions. Community interventions and remote-based treatment and delivery models (m-health) are a feasible and acceptable way to deliver HIV. MMD, has provided an important role in mitigating the impact
Safety and efficacy of COVID-19 vaccines in PLHIV	 Current approved vaccines are considered safe and effective in PLHIV, regardless of clinical /immunological status. PLHIV should not be excluded from COVID-19 vaccine access plans regardless of their immune status, and countries ought to consider including PLHIV as a priority group for COVID-19 vaccination according to their epidemiological context.

COVID-19 info at WHO website

Q&A: COVID-19 vaccines and ARVs in PLHIV

https://www.who.int/news-room/g-a-detail/coronavirus-disease-(covid-19)-covid-19-vaccines-and-people-living-with-hiv

https://www.who.int/news-room/g-a-detail/coronavirus-disease-covid-19-hiv-and-antiretrovirals

COVAX and vaccine introduction

COVAX aims to speed up the development of safe and effective accines against COVID-19: support the building of manufacturing ensure fair and equitable allocation of the vaccines for all countrie

Regulation and policy

Emergency Use Listing (EUL) WHO's EUL procedure is a risk-based procedure for assessing

nd listing unlicensed vaccines, therapeutics and in vitro se products to people affected by a public health emergenc

Country readiness and delivery

HO has worked with UNICEF. Gavi and partners to develop

sources, such as guidance, trainings, tools and advocacy

unch, refine, and optimise uptake of their COVID-19 vaccinat

Strategic Advisory Group of Experts (SAGE) on nization

SAGE advises WHO on overall global policies and strategies evelopment, to delivery of immunization and its linkages with ther health interventions

he draft landscape of COVID-19 vaccine candidates contain on vaccine candidates collected through public tion (e.g. clinical trial registries) and information that w ctly provided by vaccine developers to WHO. The land s generally updated twice a week, based on the latest n. including those we receive from scientists an

https://www.who.int/emergencies/disea ses/novel-coronavirus-2019

Vaccines explained series Q&As Coronavirus disease (COVID-19): Use of Emergency Use Listing Coronavirus disease (COVID-19): Vaccines procedure for vaccines against COVID-19 Vaccines and immunization: What is vaccination? Coronavirus disease (COVID-19): Vaccine access and allocation Vaccines and immunization: Vaccine safety Coronavirus disease (COVID-19): Vaccine research and development

Read our "Vaccines Explained" series

Thank you

Acknowledge support from:

- WHO WHE-IMST
- Kathy O'Neill
- Mary Mahy
- Marco Vitoria
- Silvia Bertangolio
- Rachel Baggaley
- Michel Beusenberg
- Shona Dalal
- Nathan Ford
- Cheryl Johnson
- Daniel Low-Beer
- Lara Vojnov
- Mazuwa Banda
- Andy Seale

